
CERN openlab minor review meeting; June 2009

Scalability tests of a
multi-threaded Geant4

prototype

Andrzej Nowak

June 16th

2009

Andrzej Nowak – Scalability tests of multi-threaded Geant4 2

A small part of a story of turning a sequential program
into a parallel application

All results presented are preliminary, this is a work in progress.

Andrzej Nowak – Scalability tests of multi-threaded Geant4 3

Geant4

>Geant4
Prominent software framework (toolkit) used for
simulating the passage of particles through matter
http://cern.ch/geant4
LHC Users:

•ATLAS
•CMSSW
•ALICE
•Gauss (LHCb)

Other users:
•BaBar
•Fermilab
•ESA
•Others

http://cern.ch/geant4

Andrzej Nowak – Scalability tests of multi-threaded Geant4 4

Rationale: Multi-core “crisis”

Andrzej Nowak – Scalability tests of multi-threaded Geant4 5

Rationale: “many-core mega-crisis?”

>We’ve been talking about multi-core for a
long time

It’s here
We’ve done little to use it
Is it already too late?

> The many-core crisis is looming
6-core parts from AMD and Intel are a reality today
24-core systems are available in your local
“computer shop”
Larrabee is coming – 4-way SMT, many cores:
reasonable to expect >20
Nehalem-EX (“Beckton”) is around the corner – 64
threads in a box by the end of this year

>Will we still need 2GB per process at CERN?

Andrzej Nowak – Scalability tests of multi-threaded Geant4 6

Rationale

>

Geant4 + “core crisis”

= multi-threaded Geant4

prototype

>

Xin Dong and Gene Cooperman from NEU
(Northeastern University) are working on a multi-

 threaded prototype of Geant4 since 2007

>

Working prototype of CMS-SW delivered in early
2009

Based on FullCMS
Full correctness maintained
Well planned approach to parallelizing an existing,
sophisticated application
Excellent initial results

>

Work continues with the involvement of the Geant4
team and CERN openlab

Andrzej Nowak – Scalability tests of multi-threaded Geant4 7

Problem decomposition and approach

>Event level parallelism (implemented using
the TOP-C library)

>Code needed to be thread-safe and reentrant

>Semi-automatic way devised to parse
existing code and “upgrade”

it to a multi-

 threaded version

>Some manual changes needed as well

>Ongoing work to automate the whole process

Andrzej Nowak – Scalability tests of multi-threaded Geant4 8

Multi-threaded Geant4

>Significant amount of data shared read-only
and only 1 critical data structure is shared
with explicit locking –

the ion table

>Huge reduction in terms of memory
consumption: ~25MB of memory per thread

A 64 core machine could be fully filled and have
only 2GB of memory!

>Several distinct phases:
Serial initialization
Parallel initialization
Parallel runtime (simulation)
Parallel termination

Andrzej Nowak – Scalability tests of multi-threaded Geant4 9

Scalability tests at openlab (Q2 2009)

>Harpertown

systems –

2x4 cores (8 total)

>Dunnington

systems –

4x6 cores (24 total)

Andrzej Nowak – Scalability tests of multi-threaded Geant4 10

Step 1 –

“Stopwatch runs”

MTG4 - Harpertown scaling

100

1000

10000

1 10

Hardware threads

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Harpertown E5450,
SLC5, 8 cores, 8
threads,
gcc 4.1.2, 64-bit,
16GB memory
(olbl0132)
Perfect scaling

Andrzej Nowak – Scalability tests of multi-threaded Geant4 11

Step 1 –

“Stopwatch runs”

MTG4 - Dunnington scaling

100

1000

10000

1 10 100

Hardware threads

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Dunnington X7460,
SLC5, 24 cores, 24
threads,
gcc 4.1.2, 64-bit, 48
GB memory
(plitehp24)
Perfect scaling

Andrzej Nowak – Scalability tests of multi-threaded Geant4 12

Step 1 –

Initial conclusions

>Resource contention
High system time (is ~5%)
CPU usage could be better (is ~92%)
Those problems are gone if we start 3x8 processes

>Expected better scaling past 8 cores
Going from 8 to 24 gives ~25% instead of ~200%

>Event processing time not the issue? What is
the impact of the different phases?

>Good example of the “multi-core vs. many-
 core”

issue

Andrzej Nowak – Scalability tests of multi-threaded Geant4 13

Step 2 –

Focus on the simulation part
 CPU graph

Andrzej Nowak – Scalability tests of multi-threaded Geant4 14

Step 2 –

Focus on the simulation part
 Memory usage graph

Serial initialization

~ 230 seconds

Parallel worker
initialization

~ 120 seconds

Parallel computation

~ 460 seconds

Andrzej Nowak – Scalability tests of multi-threaded Geant4 15

Step 2 –

Focus on the simulation part
 Speedup

MTG4 - Dunnington scaling (500 evts, pi-, 300GeV)

2, 1.81
4, 1.70

8, 1.58

16, 1.23

24, 1.07

100

1000

10000

1 10 100

Hardware threads

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

In
cr

em
en

ta
l s

pe
ed

up
 (t

o
pr

ev
io

us
)

Time [s] 500 evts,
pi-, 300GeV

Time [s] 500 evts,
pi-, 300GeV,
PERFECT
Reported
simulation time

Execution time
speedup (#cores,
value)

Andrzej Nowak – Scalability tests of multi-threaded Geant4 16

Step 2 –

Focus on the simulation part
 (red line should be flat)

MTG4 - Dunnington scaling (500 evts per thread, pi-, 300GeV)

100.0%

1000.0%

10000.0%

1 10 100
Hardware threads

Th
ro

ug
hp

ut
 [%

]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Si
m

ul
at

io
n

tim
e

(s
ec

on
ds

)

Simulation
throughput

Perfect throughput

Worker simulation
time (max)

Andrzej Nowak – Scalability tests of multi-threaded Geant4 17

Step 2 –

Conclusions

> The initialization and termination phases are
not an issue

>Adding resources past 8 threads yields little
improvements in the simulation

part (up to

24 threads)

>Running 3 processes x 8 threads gives
expected results

Nearly 300% throughput increase compared to 1p x
8t
When 3p x 8t are running, each of the processes is
1-2% slower than when running alone (i.e. 1p x 8t)

> There is a software scaling problem

Andrzej Nowak – Scalability tests of multi-threaded Geant4 18

Step 3 –

OS level analysis

>Perfmon2, strace

and code instrumentation
used

>Perfmon

2 monitoring
Looking for cache effects, false sharing, congestion
points

>System call histogram generated with strace
 –

high system time means kernel activity

>Code instrumented to verify locking
frequency, time and side effects

Andrzej Nowak – Scalability tests of multi-threaded Geant4 19

Step 3 -

Strace

results –

syscall

profiles
 (all inclusive, 500 pi-

300GeV)

>

System time spent doing the futex

call:

System time: 1900x increase (1 -> 24)
Call frequency: 5000x increase (1 -> 24)

>

The read

call (1 thread -> 24 threads):
The amount of read calls grows as expected (5x)
The system time spent in read calls grows rapidly (58x) also due to
the growth of the length of the servicing period per call (13x)

>

mremap

usage/service time grows, but insignificant

1 4 8 12 16 20 24

System
time [s]

0.04 0.5 6.95 68.18 219.47 411.94 767.09

calls 5264 23791 8’517’227 11’116’321 21’448’012 29’540’920 26’885’198

μs per
call

8 22 1 6 10 14 29

Andrzej Nowak – Scalability tests of multi-threaded Geant4 20

Step 3 –

Conclusions

>Perfmon

counts and profiles look “normal”

> Locking frequency not a prime suspect at
this point

>Unlikely causes:
Time spent in explicit locks

•Only 1us spent in a critical region on average
•Translates to ~1% of the time spent in critical regions

Cache effects and false sharing
•Roughly 1% cache misses, virtually no false sharing effects

Linux scheduling
•3 processes x 8 threads works fine

I/O

Andrzej Nowak – Scalability tests of multi-threaded Geant4 21

Step 3 –

Mysteries

>First symptoms appear already when moving
from 4 to 8, but the system is able to handle
it

>Why is there a futex

explosion when moving
from 4 to 8 and from 8 onwards?

>Why is there a disproportional system time
increase when increasing the number of
threads?

>Why are there 2 million SIGSEGV handler
reassignments? Why does the handling time
increase with the number of threads?

Andrzej Nowak – Scalability tests of multi-threaded Geant4 22

Step 4 –

OS and code level analysis, round 2

>System call analysis -

high system time
means kernel activity

Strace traces + home made tools

>Code analysis
Intel Thread Checker
Intel Thread Profiler
ltrace

> IP tracing with strace

was a disappointment

> Intel tools initially wouldn’t work with our
application –

bugs filed, activity put on hold

> ltrace

–

too slow to get meaningful output

Andrzej Nowak – Scalability tests of multi-threaded Geant4 23

Locking and system call statistics

>

Home made tools used to analyze the traces (no
solution ready)

>

Per-thread system call statistics
Number of calls
Max / min / avg time
Deviation
Errors
Total time spent in calls

>

I/O breakdown
file ops

>

Futex

histogram

count / time spent

>

More items planned

Andrzej Nowak – Scalability tests of multi-threaded Geant4 24

Step 4 –

Conclusions

> Locking is definitely a problem

> Lock decomposition needed to distinguish
different locks –

upgrades for the home

made tools needed
Network I/O breakdown
Detailed futex statistics (total time spent, taking
concurrency into account, futex breakdown and
decomposition)

Andrzej Nowak – Scalability tests of multi-threaded Geant4 25

Step 5 –

Low level analysis

>Kernel-level analysis (SystemTap, Utrace):
inconclusive, ongoing

> Thread Checker is in conflict with the
internal structure of Geant4 –

won’t work

unless G4 is recompiled with certain options
Put on hold

> Thread Profiler
Experimental version from Intel works
1 hour just to open the trace file on a modern
machine
Analysis limited to 100’000 events (average files
we generate have millions), which is about 10
seconds of runtime
Issues with symbols

Andrzej Nowak – Scalability tests of multi-threaded Geant4 26

Step 5 –

Thread Profiler overview

>~10 seconds of execution analyzed at a time

>Yellow is bad. (synchronization objects)

Andrzej Nowak – Scalability tests of multi-threaded Geant4 27

Step 5 –

Interesting side effects in TP

>Work imbalance

Andrzej Nowak – Scalability tests of multi-threaded Geant4 28

Concurrency graph for the 10s fragment

>Green (efficient work) portion is barely 20%

Andrzej Nowak – Scalability tests of multi-threaded Geant4 29

Loop fragment -

Thread utilization

>Computing resources heavily underutilized,
some threads appear to be starved, others
appear to be dominating

Andrzej Nowak – Scalability tests of multi-threaded Geant4 30

Loop fragment zoom

>Dark green = good work

> Light green = no work, waiting, idle

Andrzej Nowak – Scalability tests of multi-threaded Geant4 31

Concurrency graph -

loop fragment zoom

>Concurrency level in the middle of the event
loop is low, hovering around 12-16.

>Expected level (“perfect”) is 24

Andrzej Nowak – Scalability tests of multi-threaded Geant4 32

Drilling down

>

It’s possible to determine the
exact locations of problematic
mutexes

>

Even lower levels accessible, not
shown

Andrzej Nowak – Scalability tests of multi-threaded Geant4 33

Current plans

>Scalability improvements (locking system
upgrade)

>Updating the multi-threaded Geant4
prototype to work with the latest version of
Geant4

>Further scalability investigations
New versions of code
Lock decomposition
Continued activities with SystemTap and utrace
Thread Checker?

Andrzej Nowak – Scalability tests of multi-threaded Geant4 34

Summary –

Conclusions

>Drilling down from a very high level to a low
level for the first time takes effort and time

>Good to have a process for such activities

>Commercial tools can help a lot

>GetIon

is the main culprit?

Q & A

Andrzej.Nowak@cern.ch

	CERN openlab minor review meeting; June 2009
	Slide Number 2
	Geant4
	Rationale: Multi-core “crisis”
	Rationale: “many-core mega-crisis?”
	Rationale
	Problem decomposition and approach
	Multi-threaded Geant4
	Scalability tests at openlab (Q2 2009)
	Step 1 – “Stopwatch runs”
	Step 1 – “Stopwatch runs”
	Step 1 – Initial conclusions
	Step 2 – Focus on the simulation part�CPU graph
	Step 2 – Focus on the simulation part�Memory usage graph
	Step 2 – Focus on the simulation part�Speedup
	Step 2 – Focus on the simulation part�(red line should be flat)
	Step 2 – Conclusions
	Step 3 – OS level analysis
	Step 3 - Strace results – syscall profiles�(all inclusive, 500 pi- 300GeV)
	Step 3 – Conclusions
	Step 3 – Mysteries
	Step 4 – OS and code level analysis, round 2
	Locking and system call statistics
	Step 4 – Conclusions
	Step 5 – Low level analysis
	Step 5 – Thread Profiler overview
	Step 5 – Interesting side effects in TP
	Concurrency graph for the 10s fragment
	Loop fragment - Thread utilization
	Loop fragment zoom
	Concurrency graph - loop fragment zoom
	Drilling down
	Current plans
	Summary – Conclusions
	Slide Number 35

